欢迎光临
梦想从学习开始!

用python做测试实现高性能测试工具(3)| 小熊测试

本文主要介绍 用python做测试实现高性能测试工具(3)| 小熊测试,小熊希望对大家的学习或者工作具有一定的参考学习价值,在测试领域有所提升和发展。

  在上一篇中对代码进行了优化,离需求进了一步,但还是很大距离,代码进一步优化我也不知道怎么办了,不会高深的算法。只能从改进系统架构考虑。

  方案3: 改变系统架构

  在开始多进程之前,先简单说明一下python GIL, 之前自己对他也有些误解。因为python GIL的机制存在,同时运行的线程只有一个,但这个线程在不同时刻可以运行在不同的核上,这个调度是由操作系统完成的,如果你写个死循环,开的线程足够多,是可以把整个系统的CPU消耗干净的,此时你在Linux下通过top可以看到,us 占用的CPU不大,但sy占用的CPU会很大,CPU主要消耗在系统调度上了。下面是测试代码,大家可以试试。

import threading

class MultipleThread(threading.Thread):

def __init__(self):

threading.Thread.__init__(self)

def run(self):

while 1:

print "here"

for i in xrange(100):

multiple_thread=MultipleThread()

multiple_thread.start()

multiple_thread.join()

  既然因为GIL的存在,同时只能运行一个线程,那多线程可以提高效率,当然可以!开个3-4个线程可以明显的提高性能,大概能提高个2-3倍左右吧,但继续增加线程就是副作用了。

  系统多线程的系统架构:

  发送和接受都不存在瓶颈,主要瓶颈在在红线部分,decode和 encode部分。多线程改成多进程比较简单,工作量不大,只要把需要多进程共享的信息,由Queue改成multiprocessing.Queue()就可以了,把继承的DiameterMsgParser(threading.Thread)改成DiameterMsgParser(multiprocessing.Process),有个比较麻烦的是log的输出,python自带的logging模块在多进程下写同一个文件会引起混乱。这个在后面单独说明。

import multiprocessing

import logging

class Worker(multiprocessing.Process):

def __init__(self,mp_name,input_queue):

multiprocessing.Process.__init__(self,name=mp_name)

self.input_queue=input_queue

def run(self):

for i in xrange(100):

self.input_queue.put_nowait(i)

logging.debug("test "+str(i))

  多线程改成多进程后,在sunfire 4170 (16 core , 2.4G ) 上能支持到5000 meesages (双向), CPU占有率 30-40%,用的是标准的python2.7,因为在solaris上没安装成功pypy,所以在此机器上,我没有测试pypy对性能影响多大。但我在一个2核的linux机器上测试python和 pypy,在多进程的情况下的效率,pypy对效率的提升没有达到倍数的级别,没找到什么原因, 后面有CPU核数比较多的机器再测试下。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持小熊分享邦(www.xxfxb.com),希望大家能坚持软件测试之路,谢谢。

赞(0) 打赏
未经允许不得转载:小熊分享邦 » 用python做测试实现高性能测试工具(3)| 小熊测试

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

微信扫一扫打赏